15 research outputs found

    Threshold Accepting for Credit Risk Assessment and Validation

    Get PDF
    According to the latest Basel framework of Banking Supervision, financial institutions should internally assign their borrowers into a number of homogeneous groups. Each group is assigned a probability of default which distinguishes it from other groups. This study aims at determining the optimal number and size of groups that allow for statistical ex post validation of the efficiency of the credit risk assignment system. Our credit risk assignment approach is based on Threshold Accepting, a local search optimization technique, which has recently performed reliably in credit risk clustering especially when considering several realistic constraints. Using a relatively large real-world retail credit portfolio, we propose a new technique to validate ex post the precision of the grading system.credit risk assignment, Threshold Accepting, statistical validation

    Complexity analysis of regularization methods for implicitly constrained least squares

    Full text link
    Optimization problems constrained by partial differential equations (PDEs) naturally arise in scientific computing, as those constraints often model physical systems or the simulation thereof. In an implicitly constrained approach, the constraints are incorporated into the objective through a reduced formulation. To this end, a numerical procedure is typically applied to solve the constraint system, and efficient numerical routines with quantifiable cost have long been developed. Meanwhile, the field of complexity in optimization, that estimates the cost of an optimization algorithm, has received significant attention in the literature, with most of the focus being on unconstrained or explicitly constrained problems. In this paper, we analyze an algorithmic framework based on quadratic regularization for implicitly constrained nonlinear least squares. By leveraging adjoint formulations, we can quantify the worst-case cost of our method to reach an approximate stationary point of the optimization problem. Our definition of such points exploits the least-squares structure of the objective, leading to an efficient implementation. Numerical experiments conducted on PDE-constrained optimization problems demonstrate the efficiency of the proposed framework.Comment: 21 pages, 2 figure

    On the regularity of refinable functions

    Get PDF
    Thesis (MSc (Mathematical Sciences. Physical and Mathematical Analysis))--University of Stellenbosch, 2006.This work studies the regularity (or smoothness) of continuous finitely supported refinable functions which are mainly encountered in multiresolution analysis, iterative interpolation processes, signal analysis, etc. Here, we present various kinds of sufficient conditions on a given mask to guarantee the regularity class of the corresponding refinable function. First, we introduce and analyze the cardinal B-splines Nm, m ∈ N. In particular, we show that these functions are refinable and belong to the smoothness class Cm−2(R). As a generalization of the cardinal B-splines, we proceed to discuss refinable functions with positive mask coefficients. A standard result on the existence of a refinable function in the case of positive masks is quoted. Following [13], we extend the regularity result in [25], and we provide an example which illustrates the fact that the associated symbol to a given positive mask need not be a Hurwitz polynomial for its corresponding refinable function to be in a specified smoothness class. Furthermore, we apply our regularity result to an integral equation. An important tool for our work is Fourier analysis, from which we state some standard results and give the proof of a non-standard result. Next, we study the H¨older regularity of refinable functions, whose associated mask coefficients are not necessarily positive, by estimating the rate of decay of their Fourier transforms. After showing the embedding of certain Sobolev spaces into a H¨older regularity space, we proceed to discuss sufficient conditions for a given refinable function to be in such a H¨older space. We specifically express the minimum H¨older regularity of refinable functions as a function of the spectral radius of an associated transfer operator acting on a finite dimensional space of trigonometric polynomials. We apply our Fourier-based regularity results to the Daubechies and Dubuc-Deslauriers refinable functions, as well as to a one-parameter family of refinable functions, and then compare our regularity estimates with those obtained by means of a subdivision-based result from [28]. Moreover, we provide graphical examples to illustrate the theory developed

    Solving optimal control problems governed by random Navier-Stokes equations using low-rank methods

    Full text link
    Many problems in computational science and engineering are simultaneously characterized by the following challenging issues: uncertainty, nonlinearity, nonstationarity and high dimensionality. Existing numerical techniques for such models would typically require considerable computational and storage resources. This is the case, for instance, for an optimization problem governed by time-dependent Navier-Stokes equations with uncertain inputs. In particular, the stochastic Galerkin finite element method often leads to a prohibitively high dimensional saddle-point system with tensor product structure. In this paper, we approximate the solution by the low-rank Tensor Train decomposition, and present a numerically efficient algorithm to solve the optimality equations directly in the low-rank representation. We show that the solution of the vorticity minimization problem with a distributed control admits a representation with ranks that depend modestly on model and discretization parameters even for high Reynolds numbers. For lower Reynolds numbers this is also the case for a boundary control. This opens the way for a reduced-order modeling of the stochastic optimal flow control with a moderate cost at all stages.Comment: 29 page

    State-constrained Optimization Problems under Uncertainty: A Tensor Train Approach

    Full text link
    We propose an algorithm to solve optimization problems constrained by partial (ordinary) differential equations under uncertainty, with almost sure constraints on the state variable. To alleviate the computational burden of high-dimensional random variables, we approximate all random fields by the tensor-train decomposition. To enable efficient tensor-train approximation of the state constraints, the latter are handled using the Moreau-Yosida penalty, with an additional smoothing of the positive part (plus/ReLU) function by a softplus function. We derive theoretical bounds on the constraint violation in terms of the Moreau-Yosida regularization parameter and smoothing width of the softplus function. This result also proposes a practical recipe for selecting these two parameters. When the optimization problem is strongly convex, we establish strong convergence of the regularized solution to the optimal control. We develop a second order Newton type method with a fast matrix-free action of the approximate Hessian to solve the smoothed Moreau-Yosida problem. This algorithm is tested on benchmark elliptic problems with random coefficients, optimization problems constrained by random elliptic variational inequalities, and a real-world epidemiological model with 20 random variables. These examples demonstrate mild (at most polynomial) scaling with respect to the dimension and regularization parameters.Comment: 29 page
    corecore